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This work presents a numerical means of investigating the acoustic scattering by
disk-shaped bodies. On the basis of Burton and Miller’s method, the singularity-free
formulations of Helmholtz integral equation and its normal derivative are used to form a
composite equation. A triangle polar co-ordinate transformation method is further applied
to treat the nearly singular kernels arising from a situation in which the field points and
source points are very close together. Numerical simulations consist of the acoustic
scattering by a short circular cylinder and a thin circular disk respectively. For the latter case
with zero thickness, the corresponding analytical solutions involving angular and radial
oblate spheroidal wave functions are evaluated as well. Comparing the numerical results
with the experimental data and analytical solutions demonstrates the effectiveness of the
proposed method.

© 2000 Academic Press

1. INTRODUCTION

Integral equation (IE) methods are a conventional means of treating many physical
problems, including acoustics, fluid mechanics, steady state heat conduction, elastostatics,
magnetostatics, and fracture mechanics. When the working domain extends to infinity, IE
methods are highly attractive in that the problem’s dimensionality is reduced by one, and
the infinite domain is transformed to finite boundaries in which the farfield condition is
automatically satisfied, provided that an appropriate Green’s function is applied. Regarding
acoustic scattering and radiation, two conventional methods based on the IE approach
have been proposed to avert the well-known non-uniqueness problem. The first method,
combined Helmholtz integral equation formulation (CHIEF), was proposed by Schenck
[1]. The second method, composite outward normal derivative overlap relation
(CONDOR), was advocated by Burton and Miller [2] which linearly combines the
Helmholtz integral equation with its normal derivative. Both methods have their own
limitations even for smooth body shapes, accounting for why numerous investigations have
ttempted to enhance the numerical reliability, efficiency, and accuracy [3]. See also a recent
paper by Benthien and Schenck [4] for a brief review of various methods.

Moreover, for disk-shaped bodies and bodies with sharp edges or corners, nearly singular
integrals appear in the IE formulation. Accurately assessing such integrals is generally much
more difficult than the weakly singular and Cauchy principal value singular integrals [5].
Under such circumstances, two conventional approaches can be applied to yield
accurate results. The sub-division method increases the number of sub-divisions and the
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adaptive quadrature method increases the order of the quadrature formula around the
nearly singular point [6]. Such approaches, however, are expensive in computation and
pose a difficulty in globally controlling accuracy. For the potential problems, other
alternative approaches have been proposed to avert this difficulty [7]. For instance,
applying appropriate transformations can map domains with corners onto domains with
smooth boundaries. Another approach expresses the harmonic function in the form of an
infinite series in the neighborhood of a corner [8, 9]. Heise [ 10] further demonstrated that if
a fundamental solution on a Riemann surface with an optimal number of sheets is chosen,
several kernels in integral equations vanish on the flanks of a sector. Consequently,
a potential problem on a domain with a corner can be formulated as an integral equation
taken over a part of the boundary, which does not contain the neighborhood of the corner.
Sladek et al. [11] also proposed a superposition principal method for the regularization. We
refer the reader to references [12-14] for the more detailed discussions. Although
above-mentioned approaches have not been extended to the acoustical problems, research
involving the nearly singular singularity has been a main theme of the potential and other
problems. The reasons may be ascribed to the fact that the CHIEF and CONDOR methods
are already complicated in terms of formulation and the normal vector at a corner cannot
be defined. Therefore, other efficient methods deemed appropriate for the current acoustical
problem are highly desired.

For thin-body scattering, every field point on the boundary possesses both
singularity and near singularity in the IE formulation, thereby complicating numerical
implementation. The so-called multidomain boundary element formulation is an effective
means of averting such a difficulty when the disk-shaped body’s thickness degenerates
[15,16]. However, such an approach fails to simulate a disk-shaped body with a noticeable
thickness since the continuity condition of the normal velocity across a body with zero
thickness cannot be applied. Krishnasamy et al. [17] applied the CONDOR approach to
eliminate the fictitious eigenfrequencies. The nearly singular integrals were evaluated by the
use of Taylor’s expansion, Stokes’ theorem, a polar co-ordinate transformation and other
specific treatments. In light of the above developments, this paper presents an effective
means of simultaneously evaluating the singular and nearly singular integrals such that
the acoustic scattering by disk-shaped bodies and bodies with edges or corners can be
studied without numerical difficulty. The rest of this paper is organized as follows.
Section 2 outlines the fundamental equations of the problem. On the basis of Burton and
Miller’s method, the composite integral equation in a completely singularity-free form
derived by Hwang [18] is used. In contrast to other regularization schemes, this
formulation globally regularizes weak and hypersingular kernels and, therefore, can be
directly implemented using standard quadrature formulae. On the other hand, Huang and
Cruse [5] developed a novel scheme to efficiently evaluate the nearly singular integrals by
applying two successive co-ordinate transformations. Other investigations further
developed a generalization of Huang and Cruse’s method by replacing one of the
transformations with a triangle polar co-ordinate transformation [19,20]. Section
3 describes this method with an appropriate modification suitable for the current problem.
Some preliminary test examples are presented as well. Combining formulations in Sections
2 and 3 yields the solution method for the current problem. Section 4 examines the
proposed method’s effectiveness by solving the acoustic scattering from a rigid circular
cylinder with length 2h and radius a. The edge effect is examined by assigning h/a = 1 and
the dimensionless wave number ka varying from one to seven. The second example
investigates the thickness effect by assigning h/a = 0-0423, 0-02 and, again, ka varying from
one to seven. Comparisons are made with the experimental data and analytical solutions.
Conclusions are finally made in section 5.
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2. INTEGRAL EQUATION FORMULATION

The propagation of acoustic waves through an unbounded homogeneous medium is
described by the wave equation

0%(r, t)
or?

V(0= m

where V2 denotes the Laplacian operator, ¢ the velocity potential at a point r at time ¢, and
¢ the speed of sound in the medium at the equilibrium state. The velocity potential can be
written by summing the two parts as follows:

b=0'+ ¢, @

where ¢’ denotes the incident velocity potential and ¢°® represents the scattered velocity
potential. For a steady state excitation with a time factor exp(— iwt), equation (1) reduces to
the Helmholtz differential equation in the following form:

(V2 +k*)¢ =0, )

where i denotes the imaginary unit, w the angular frequency, and k = w/c the wave number.
The excess acoustic pressure can be written as

= iwpo ¢, @)

where po denotes the density of the fluid at the equilibrium state. The scattered velocity
potential should also satisfy the Sommerfeld radiation condition, which can be written in
a three-dimensional form as

lim r| %2~ ikg*| = 0 5)
The corresponding integral formulation of equation (3) can be written as follows:
. 0Gy (P, 0
o) =01+ [ (00002 60,0709} s, ©

where n, denotes the distance in the direction of the outward normal at the source point
Q and S represents the body surface. The free-space Green’s function in a three-dimensional
form can be expressed as

G (P, Q) = e*®/4nR, (7)

where R denotes the distance between the field point P(x, y,z) and the source point
Q(&, n, ). The value of factor ¢ depends on the position of P, i.e.,

1 for PeS,,
¢=1{3 for Pesmooth S, (8)
0 for PeS§,,
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where S, denotes the infinite domain exterior to S, and S; represents the interior domain
enclosed by S. For P on the surface with a sharp corner, ¢ is related to the solid angle Q by

e=1—Q/4n

1 0 /1
:1+47J anQ< >dsQ )

The boundary relation of equation (6) fails to yield unique solutions at certain characteristic
frequencies. Non-uniqueness is a purely mathematical problem arising from the breakdown
of boundary integral representation rather than from the nature of the physical problem. To
avert this difficulty, a second equation can be obtained by differentiating equation (6) in the
normal direction at P:

@ 0P’ 0 0G(P, Gi(P,Q) 0
Lo | o0 s, - [ RO as, o

A
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Linearly combining equation (6) with equation (10) allows us to obtain unique solutions for
all real frequencies when the coupling parameter is selected such that its imaginary part is
non-zero [2]. Notably, the need to evaluate the hypersingular integral in equation (10)
largely hinders the numerical implementation of the composite equation. Numerous
investigations have attempted to efficiently evaluate the hypersingular integral. Most of the
schemes alleviate the highly singular behavior only, and leave a weak singularity in the final
formulation. The weak singularity is then locally regularized using a co-ordinate
transformation. In contrast, Hwang’s formulation was derived using a global approach
[18]. Herein, we adopt this formulation owing to its accuracy and efficiency in computation.
See also Yang [21] for a more detailed discussion of this approach.

By considering a Neumann boundary condition, d¢/dn =0, and assigning & =3,
equation (6) reduces to

26,
PP - ger+ [ v " P as, (1)
ng

in which 0G,/0n is weakly singular [9]. Equation (11) can be expressed in a regular form as
follows:

) 0G, 0G,
$(P) = i(P) + j [qs(Q T gy }dsg, (12)

where G, = inR denotes the free-space Green’s function for Laplace equation. The
integrand in equation (12) is set equal to zero when Q coincides with P. Under the same
boundary condition, equation (10) reduces to

o 0GP, Q) |
il KUl (13)

The preceding equation can be rewritten as follows:

6¢":_J¢(Q)62(Gk—GO)dS f@Goa(pdS 1 0
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where ¢ is a velocity potential of Laplace equation. Notably, the hypersingular integral in
equation (13) is converted into two weakly singular integrals plus a function d¢/dn in
equation (14). Furthermore, equation (14) can be expressed in a regular form as follows:

9" dp 0*(Gy — Gy)  k*Goa(Q)
26(P)¢() onp  onp L|:¢(Q) OnpOng B 20(P) ¢(P):|

0Gy 0 0Gy 0
+J [Ofp_o‘)(p:|dsg’ (15)

where the first and second integrands are set equal to ik*¢(P)/12% and zero, respectively,
when Q coincides with P. Notably, equation (15) introduces three extra unknowns, i.e., g, @,
and J¢/0n. Herein, the surface source function ¢ makes the surface potential an
equipotential @, which is defined by

®, = —J 7(0) G, dS,. (16)

The preceding equation contains a weakly singular integral. However, the fact that @,
remains constant in the interior of an equipotential surface accounts for why its value can be
conveniently computed by locating point P inside the boundary surface. For instance,
locating the origin of the co-ordinate system inside the boundary surface and, furthermore,
locating the field point P at the origin yields

®, — _1J __0©
s(E+n*+ 0

B dsSy. (17)
Herein, the function ¢ can be expressed as

0G
o(P==2 | 0@ (18)
S
This equation can be rewritten in a regular form as
0Gy. 0G
0=||0@ 22— ap) 2 | ds,, (19)
N anp anQ

where the integrand is set equal to zero when Q coincides with P. The function d¢/on is
determined by

e 0 d 0 g
@ (’)=JG [ 0 @ (P]dSQ—L[d)(Q) qs(P)]@dsg, (20)

a(P) onp Ong o(P)onp

where both the integrands are set equal to zero when Q coincides with P.

In the numerical implementation, the functions ¢ and @, are evaluated in advance, and
then ¢ and J¢p/0n are simultaneously solved. Following the regularization scheme in
a manner similar to Hwang, Yang [21] derived a two-dimensional variant of the
singularity-free formulations subject to Neumann and Dirichlet conditions respectively.
That investigation also compared the efficiency of Yang’s and Hwang’s formulations with
the formulations proposed by others. Moreover, Yang [22] successfully extended the
formulations presented above to investigate acoustic scattering from perfectly hard and soft
bodies across a wide frequency range.
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3. A METHOD OF EVALUATING NEARLY SINGULAR INTEGRALS

In the previous section, the weak and hypersingular kernels were desingularized using
some properties of potential theory. The formulations can be implemented without
difficulty in most engineering applications with one exception, when the nearly singular
kernels appear. The nearly singular kernels appear when the field points and source points
are extremely close together. This section describes an efficient means of evaluating nearly
singular integrals [5, 19, 20].

Let us consider an integral in the following form:

| &
I= f f i, 21)

where g denotes a function and n represents an integer. Herein, efficiently evaluating I for
a small value of R is of primary concern. Allow Ry, = R(y,, 4¢) to be a distance from the field
point to the point on the integration domain that is closest to the field point. Equation (21)
can be rewritten as

_ g . _ g
= | mrrr = | ag e e 22

where the (u, v) co-ordinates are defined by u =y — y9 and v = 2 — 4y. The triangle polar
co-ordinate transformation method divides the integration domain into several triangles
around the point (u, v) = (0, 0), which is referred to as the first vertex of the triangles. The
second and third vertices of a triangle, counted counterclockwise, are denoted by (u®, v®)
and (u®, v¥) respectively. The relationships

u=p( = Bu® +pupu®,  v=pl — B)v® + ppo®® (23)

map each triangle into a unit square in the (u, ) co-ordinates. Correspondingly, the
Jacobian can be written as

Ja=2uA, (24)
where A denotes the area of triangle in the (u, v) plane. Using the relationship
R —Ro=p"f (1 ) (25)

and equation (23) in equation (22) leads to

1 1 g
— = 2uAdud 26
I=21 gﬁﬁmmw»m+&v“ wdp. (26)

where j denotes the jth triangle. Herein, the value of m is set at two if the projection of the
field point in the (y, ) co-ordinates is inside or on the boundary of the integration domain
and set at one if the projection is outside the domain. Depending on the position of the field
point relative to the panel, different forms of f'(y, f) in equation (26) can be derived so that
the nearly singular kernel integral can be evaluated equally effectively in all practical cases.
See Wu [19] for a detailed description of the function f(u, ). Substituting the relationship

oo =pu" (27)
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into equation (26) yields

B B 1 1 g 2A(x2/m71
I‘?J"?Jo J of @+ R m (28)

For convenience, consider a one-dimensional integral in the following form:

1 h
= L T2/ () + Rol ™ @)

where h denotes a function. Equation (29) is a nearly singular integral for a small value of
R,. Applying a transformation formula

1
=9 30
* (Cl + Czo(*)l ’ ( )
in equation (29) leads to a regular integral
1 lh x\l(n—1)—1
sz ; calh(cy + cru i — G31)
—1 LS(@*) 4+ 6(f(0) = f(@*)(cr + c20*)]

where 0 = Ry/ f(0, f). Equation (31) is regular because the function f(«*) is always finite for
a*e[—1,1]. The coefficients ¢; and ¢, are defined by

. (1 4+ ) 4 s o (1 4+ ot — st )
P28t ) T 281 4 )
where
Ind 1
= L——— |, d>=. 33
ma’{’ ln(?_d)]’ = 2510 (33)

In practice, the constant d is chosen to be as small as possible for the integration accuracy.
Notably, equation (30) maps «(0, 1) to o*(1, — 1).
For illustration, consider the following integral:

720 140 4
1= J J — dxdy, (34)

—n/20 J —1/40

where R = (x* + y? + z3)'/2. Equation (34) represents an integral in a typical boundary
element around the edge of a circular disk, which is a test case that will be presented in the
next section. As Figure 1 illustrates, the sub-division method and the present method divide
the integration domain into four and six sub-domains respectively. Correspondingly, total
numbers of 4 x N x N quadrature points for the sub-division method and 6 x M x M points
for the present method using the Gauss-Legendre formula are applied to evaluate equation
(34). Note that each sub-domain of the present method has the same area, and the usage of
four sub-domains for the sub-division method is only for computational convenience. The
total number of quadrature points is known to be the main concern. Figure 2 plots
the relative error, which is defined by |(calculated value-exact value)/exact value|, against
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(a) (b

Figure 1. Sub-domains of integration for integral I in equation (34) using (a) the sub-division method and (b) the
present method.

the total number of quadrature points for z, = 0-04, 0-01. This figure indicates that the
present method yields a greater accuracy than the sub-division method for both cases.
According to Figure 2(b), the present method’s efficiency is markedly improved for the
smaller value of z,. See Huang and Cruse [5] for a more detailed discussion on integration
accuracy by varying the number of sub-elements and Gaussian points.

4. ILLUSTRATED EXAMPLES

A solution method is developed by combining the Helmholtz integral formulations in
section 2 with the formulations in section 3. Under normal circumstances, the integral
formulations in section 2 are used to remove the weak singularities and hypersingularity.
The solution method also includes a simple, self-adaptive means of detecting the nearly
singular kernels. Such a means determines when to use the formulae in section 3 to treat the
nearly singular integrals. First, consider a circular cylinder with length 24 and radius
a exposed to a plane wave incident in the direction of the negative z-axis (Figure 3). The
edge effect is investigated by assigning h/a = 1. The coupling factor in Burton and Miller’s
method was set to be i/ka which is the best choice suggested by Burton [23] and Meyer et al.
[24]. 1t is clear from physical considerations that this choice is to provide maximum
absorption at the boundary; that is, the specific admittance should be unity. Herein, 20
collocation points along the 0 direction and also along the r-direction yield 400 sub-surfaces
on the lower and upper surfaces respectively. Twenty collocation points along the
0-direction and 40 points along the z-direction yield 800 sub-surfaces on the cylindrical
surface. The order of quadrature formula in each element depends on the element’s size. An
absolute error of 10~ ° for the integration along each element is generally prescribed. The
LU decomposition method is used to solve the system of linear algebraic equations. Of
particular concern in this problem are the characteristic wave numbers. The characteristic
wave numbers for a circular cylinder are given by [25]

% 2 1/2
k.a — [(” 22”) + ijs:| (35)
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Figure 2. Relative error of integral I in equation (34) for (a) zo = 0-04 and (b) zo = 0-01 using the sub-division
method (solid circle) and the present method (open circle).

in which n* denotes a positive integer and «,, denotes the sth root of the gth Bessel function,
ie.,

J (o) =0, ¢=0,1,2,... (36)
For h/a = 1, the first few characteristic wave numbers are 2:872, 3-956, 4-141, 4-955, 5-291,

5-370, 5:739, 6:020, 6-:074, 6:351, 6:571, 6:728, 6:970, 7-112 and 7-189. Figure 4 displays the
excess-pressure ratios |p/po| on the upper and lower surfaces for the dimensionless wave
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Figure 4. Excess-pressure ratios on the upper and lower surfaces of a circular cylinder with h/a = 1 exposed to
a plane wave of (a) ka = 1, (b) ka = 3, (c) ka = 5, and (d) ka = 7 (solid circle: experimental results; solid line: the
present numerical results).
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Figure 4. Continued.

number ka increasing from one to seven, where p, denotes the free-field pressure. Notably,
the chosen values of ka are extremely close to the characteristic wave numbers with one
exception, i.e., ka = 1. The proposed method’s effectiveness is examined by comparing the
calculated results with the experimental data [26]. For the lower ka’s, the calculated results
correlate well with the experimental data. For the higher ka’s, ie., ka=15, 7, the
computational accuracy is still acceptable since, under such circumstances, the experimental
error in | p/po| increases to around a value of one. This error is ascribed to an error in the
frequency setting of the oscillator.

Next, consider two limiting cases, i.e., h/a = 0-0423, 0-02, of the previous example. For
h/a = 0-0423, the first characteristic wave number appears at a value of 37-212. Although
the first characteristic wave number markedly exceeds the chosen wave numbers, for
convenience and preserving generality, the same solution method as in the previous
example is applied for these two limiting cases. Owing to the small thickness, only one
collocation point is applied along the z-direction and other distribution of collocation
points resembles the previous example. Notably, every field point on the body surface
contains both the singularity and near singularity. Figure 5 displays the excess-pressure
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Figure 5. Excess-pressure ratios on the upper and lower surfaces of a circular disk exposed to a plane wave of (a)
ka =1, (b) ka = 3, (c) ka = 5, and (d) ka = 7 (solid circle: experimental results, h/a = 0-0423; solid line: the present
numerical results, h/a = 0-0423; dotted line: the present numerical results, h/a = 0-02; dashed line: the present
analytical results, h/a = 0; open circle: Leitner’s analytical results, h/a = 0).

ratios on the upper and lower surfaces for h/a = 0-0423, 0-02 and ka increasing from one to
seven. For comparison, this figure also plots the analytical solution for a circular disk with
zero thickness. The analytical solution on the disk surface can be written as [27]

© 1
, n; Non R (— ic, i0)

(SN S}

d)i + (bs = SOn(_ iC, _1)S0n(_ iC, '/’)3 (37)

where ¢ = ka and N,, is defined by the orthogonal relation

0, n' #n,
1, n=n.

1
J‘ SOn(_ iC, ’7)SOn’(_ iC, 7]) d’/’ = 5On’N0n: 5On’ = { (38)
1

So, in equation (37) denotes the angular oblate spheroidal wave function of the first kind,
and RY) is related to the radial oblate spheroidal wave functions of the first and
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Figure 5. Continued.

second kinds by
R = Ry, +iRS). (39)

In a related work, Leitner [28] presented the first numerical results of exact theory for the
diffraction of sound by a circular disk up to ka = 5. Herein, we re-calculate the exact theory
up to ka =7. Figure 5 indicates that, in general, the proposed method’s calculations for
hja = 00423 correlate well with the experimental data. Equation (37) also yields
satisfactory results with one exception, i.e., the region close to the edge. The discrepancy
around the edge becomes more apparent with an increase in the wave number. This failure
is ascribed to the fact that the value of a | p/po | at r/a = 1 always remains one by applying the
exact theory. This finding confirms the physical intuition that the thickness and edge effects
of acoustic scattering by a disk-shaped body become more significant with an increase in the
wave number, as also discussed by Wiener [26]. Figure 5 also depicts that the numerical
results for h/a = 0-02 and the zero-thickness solutions are closely correlated with one
exception again, i.e., the region close to the edge. Therefore, under the circumstance of
hja <002 and low wave numbers, the proposed method and multidomain boundary



238 S. A. YANG

element method can function equally well to simulate the acoustic scattering by a disk-
shaped body. The latter method is more attractive in numerical efficiency since no
transformation (as presented in section 3) is necessary. However this method has problems
in determining (1) the criterion in which the zero-thickness approximation is acceptable and
(2) the tolerance limit in which the discrepancy due to the edge effect can be neglected.
Notably, both the thickness and edge effects of a disk-shaped body are functions of the wave
number, as mentioned earlier. Finally, also of notable concern is the difference between
Leitner’s and the present calculations using exact theory in the proximity of the edge of the
shadow side for ka = 5 in Figure 5(c). This discrepancy may be attributed to the restricted
ability of computing tools in Leitner’s time.

5. CONCLUSIONS

This paper presents a solution method to investigate the acoustic scattering from rigid
bodies with a focus on efficiently evaluating nearly singular integrals. The current method
makes use of a composite integral equation which is free of weakly singular and
hypersingular kernels, and a transformed integral which is free of weakly singular and
hypersingular kernels, and a transformed integral which is free of nearly singular kernels.
Comparing the numerical calculations with the available experimental data and analytical
solutions confirms the effectiveness of the current method. According to the results, the
current method outperforms the conventional sub-division method in terms of
computational efficiency. Meanwhile, the current method avoids the zero-thickness
limitation of the multidomain boundary element method. Therefore, the related edge and
thickness effects can be investigated with accuracy and efficiency. These effects generally
become more significant with an increase in the wave number. Under the circumstance of
higher wave numbers, Yang’s method [22] can be applied to assess the oscillatory integrals
appearing in the integral formulation. A future study should incorporate an appropriate
grid generation (local) method or a global method into the proposed method to resolve the
related acoustical problems with generalized body shapes.
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